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Abstract. The cost and difficulty of acquiring case features motivates
interest in machine learning for feature acquisition. For computer vision
domains, manual feature extraction has proven infeasible, but previous
studies have shown the effectiveness of extracting features from deep
neural models for case-based classification. Such approaches have gen-
erally been based on training the network for stand-alone classification
accuracy, under the assumption that effective classification reflects high
quality network features. However, it is not clear that the features best
suited to network processing will be best for CBR. In response, this pa-
per proposes refining previous network feature extraction approaches by
adapting network training to reflect the goal of using network features
for CBR. Specifically, it proposes augmenting conventional cross-entropy
loss with a proxy term that reflects how the CBR system will use ex-
tracted features for similarity assessment. To this end, we investigate
using Pairwise Distance, Cosine Similarity, and Sinkhorn Divergence as
proxy functions within a triplet loss training framework. Evaluations on
the benchmark image classification datasets MNIST, Animals with At-
tributes 2, and CIFAR-10 support the effectiveness of this method, with
an integrated case-based classification system using the extracted fea-
tures outperforming the feature extraction network applied end-to-end
as well as integrated models developed in our previous research.
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1 Introduction

The performance of case-based reasoning (CBR) systems depends on the quality
of case retrieval. Traditionally, retrieval is based on hand-crafted feature vocab-
ularies generated by experts [13, 25, 31]. However, manual feature acquisition is
costly, hard to scale, and risks insufficient domain coverage in poorly-understood
domains. For some tasks, such as image classification—the focus of this paper—
symbolic feature generation is infeasible. Deep learning (DL) neural network
methods have shown strong performance for a range of machine vision problems
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(e.g., [8, 19, 37, 41]). enabled by the networks’ ability to learn large sets of useful
features from raw data via a scalable objective function optimization process.
The ability of deep neural networks to generate useful domain features has kin-
dled interest from the CBR community in integrating CBR with DL feature
learning (e.g., [26–28, 34, 35, 38]). In these approaches, DL provides robust fea-
ture extraction from raw data to ease knowledge acquisition overhead for the
case-based classifier, which can render decisions that are more explainable than
those made by a DL-only system.

In previous work on extracting features from DL networks, including our
own (e.g., [39]), the networks from which to extract features have been trained
for stand-alone classification accuracy. However, we hypothesize that a neural
model trained in this way may be encouraged to learn features that discriminate
between examples from different classes, more so than ascribing similarity to
examples from the same class (which is critically important for case-based clas-
sification). In response, this paper proposes augmenting the objective function
for network training to encourage the DL model to learn features that are espe-
cially suitable for case retrieval. A näıve approach to this would be to integrate
a measure of case-based classification accuracy into the objective function to
influence feature learning directly. However, this is infeasible because the output
of a case-based classifier using nearest-neighbor retrieval is non-differentiable;
consequently, it is unsuitable for gradient-descent-based learning. Instead, we
propose augmenting the DL framework with a differentiable proxy function that
approximates the requirements of a case-based classifier during the learning pro-
cess. We explore this approach using three different proxy functions—Pairwise
Distance, Cosine Similarity, and Sinkhorn Divergence [17], which quantifies the
divergence between feature distributions. These proxy functions quantify loss
as a measure of “closeness” for two examples in the feature space, enabling the
model to consider loss terms during training that are based both on feature-level
differences between examples and on the model’s overall classification accuracy,
which is captured by cross-entropy.

We evaluate the benefit of including these proxy functions for feature ex-
traction for case retrieval informing case-based classification on the MNIST [12],
Animals with Attributes 2 (AwA2) [40], and CIFAR-10 [23] datasets. Results
show that while optimal parameterizations may vary for different datasets, the
proxy-based approach enables CBR classification accuracy that outperforms the
analogous DL-only approach. Furthermore, this approach also outperforms our
previous non-proxy-guided DL-CBR integrated systems (e.g., [39]).

2 Related Work

Effective feature vocabularies for retrieval are a critical requirement for CBR
approaches. Traditionally, this requirement has been addressed through knowl-
edge engineering (e.g., [13, 25, 31]). However, acquiring feature information in
this way can be costly, and insufficient expert knowledge or capability to ex-
press this knowledge for some domains may make knowledge-engineered feature



sets incomplete or inadequate for certain tasks. Some symbolic learning meth-
ods have been successfully applied to this problem (e.g., [4, 6, 7, 10, 16]). More
recently, integrating DL models with case-based methods has shown promise for
leveraging the powerful inference capability of deep neural models to augment
CBR systems. One such integration is an “inherently interpretable model” that
uses a DL model to perform predictions based on similarity scores comparing
generated features and known prototypes, reminiscent of retrieval in CBR (e.g.,
[5, 9]). In addition, DL models that focus on similarity (e.g. [22, 33]) have been
used as metric learners for CBR similarity assessment [1, 30]. Other research
investigates using CBR for post-hoc DL model explanation [3] or in integrated
“twin systems” that extract weights from the DL model to retrieve an effective
explanation for its decision [21].

Multiple projects have investigated extracting features for case-based clas-
sification from DL models. Turner et al. apply this approach to perform rel-
ative classification for novel or low-confidence evaluation examples, leveraging
extracted features to inform a CBR model that uses clusters in its search space
to form implicit classes [34, 35]. Feature extraction for CBR classification has
also been shown to outperform other approaches in some case studies [30, 39].
Additional research has studied where best to extract features within a network,
suggesting extraction from after the densely-connected layers in a convolutional
neural network, at which point features have ideally been combined into more
comprehensive indices [26]. Model-level structural parameters, such as DL model
architecture and number of features extracted, have also been shown to affect
feature quality [26, 27]. Extracted features have been combined with knowledge-
engineered features for greater model accuracy [27, 38], and pretrained models
have been used as the basis for extracting high-quality features for tasks in
small-data domains, supporting integrated DL-CBR models that can outper-
form analogous DL-only models [39].

Notably, these works train the DL model independently, and then extract
features for use in case retrieval, reflecting the plausible assumption that both
CBR and DL models will find similar features useful. However, we hypothesize
that higher quality features may be extracted from a DL model that is sensitized
to the needs of the case-based classifier. Work in other contexts has shown the
benefit of modifying loss functions to incorporate domain knowledge (e.g., [14]).
In this work, we investigate using a proxy function within the DL objective func-
tion, ideally biasing the DL model training to select for features that highlight
similarity relationships between cases.

3 Network Training Reflecting Case-Based Classification

Our method for sensitizing the feature extraction network to the needs of a case-
based classifier focuses on using three different distance functions – Pairwise
Distance, Cosine Similarity, and Sinkhorn Divergence [17]—to favor features
that facilitate effective similarity assessment between pairs of examples. These
distance functions are incorporated in a triplet loss optimization term [36] that



is combined with cross-entropy loss to guide weight updates during training. We
discuss these model components in detail below.

DL classifiers typically learn features that enable discriminating between in-
stances of different classes, while CBR models generally focus on ascribing sim-
ilarity to examples that belong to the same class. Thus, we hypothesize that it
may not be appropriate to use the same kind of features for both approaches. To
address this, we target the DL model’s loss function; typically, a DL model uses
cross-entropy loss, which maximizes the number of correct classifications while
minimizing the incidence of incorrect classifications for a given task. This pro-
cess emphasizes features that are highly predictive of the target labels, ideally
ensuring that each class is represented by a set of features in the learned feature
space that differentiate it from each other class.

By contrast, a case-based classifier classifies new cases by comparing their
feature representations to those of cases stored in a case base, relying on sim-
ilarity scores to identify the closest matches. Consequently, features associated
with intra-class similarity may be more appropriate. We hypothesize that these
characteristics suggest that training networks in alignment with case-based clas-
sification will result in better features for CBR than training the network for
standalone classification. Therefore, instead of using cross-entropy loss alone, we
integrate another loss term that serves as proxy for the needs of the case-based
classifier.

3.1 Three Proxy Functions for DL Training Guidance

We consider three functions to use as the proxy term in the DL loss function,
targeting three candidate distance measures that might be important to a CBR
system: Pairwise Distance considers simple Euclidean distance, Cosine Similar-
ity the angular similarity between features in the feature space, and Sinkhorn
Divergence the distance between feature distributions. We note that many dis-
tance measures are used within CBR, and that others might be most suitable
for particular tasks; these are simply illustrative examples.

Pairwise Distance measures the similarity between two data points in a fea-
ture space by computing a distance measure. It is often used in contrastive learn-
ing frameworks, where the goal is to ensure that similar samples have smaller
distances while dissimilar samples are pushed farther apart [36]. Eq. 1 shows
a generalized formula of Pairwise Distance for two feature vectors fi and fj of
input samples xi and xj . It estimates the p-norm of the difference between two
vectors by adding some constant ϵ to avoid division by zero if p is negative:

D(fi, fj) = ||fi − fj + ϵ||p (1)

Cosine Similarity focuses on the angular relationship between feature vec-
tors, making it more robust to variations in magnitude. Specifically, it measures
the cosine of the angle between two non-zero feature vectors defined in an inner
product space and then normalizes this value relative to the vector magnitudes.



The Cosine Similarity value always lies within the interval [−1, 1], with a simi-
larity of 1 indicating that two vectors are perfectly aligned, −1 signifying that
they are diametrically opposed, and 0 meaning that they are orthogonal (i.e.,
uncorrelated, Eq. 2).

S(fi, fj) =
fi.fj

max(||fi||2.||fj ||2, ϵ)
, (2)

Here, fi and fj are the two feature vectors corresponding to examples xi and
xj . ϵ is a small non-zero constant used to avoid division by zero.

Sinkhorn Divergence is derived from optimal transport theory [11], captur-
ing a nuanced notion of similarity by considering the cost of transforming one
probability distribution into another. In context of this work, Sinkhorn Diver-
gence assesses how difficult it would be to execute a given transport plan (a
transformation) that maps the features belonging to one example to match an-
other, given a cost function for the transformation. This gives a refined notion
of how similar two sets of data are, because it takes into account the effort of
‘matching up’ the points, not just their overall difference. That is, it considers
the topography of the feature space between the features of the two examples in
addition to the numeric distance, ideally sensitizing it to “challenging” regions
that might signify decision boundaries. In this way, it has the potential to focus
learning on dimensions that correlate strongly with a change in class. In image
processing, Sinkhorn divergence can be used as a distance measure comparing
images represented as distributions of local features, such as features generated
by a deep network.

For features fi and fj , modeled as probability distributions over possible
feature values, the regularized Wasserstein distance [2] is:

Wϵ(fi, fj) = min
γ∈U(fi,fj)

∑
a,b

γ(a, b) c(a, b) − ϵH(γ), (3)

where U(fi, fj) is the set of valid transport plans, c(a, b) is the cost function
(e.g. squared Euclidean distance), γ(a, b) is the transport plan, and H(γ) is
an entropy term (regularized by ϵ). Sinkhorn Divergence then refines this by
removing self-similarity biases [17]:

Sϵ(fi, fj) = Wϵ(fi, fj) − 1
2

(
Wϵ(fi, fi) +Wϵ(fj , fj)

)
. (4)

This encourages the model to learn features that reflect meaningful alignments in
the data rather than simple distances, providing richer estimates for properties
relevant to case-based classification [11].

3.2 Triplet Optimization: Enhancing Similarity Learning in DL

Triplet optimization is a technique in metric learning approaches [20] that en-
courages a deep neural network to learn features that capture meaningful rela-
tionships between data points [32]. Specifically, it encourages a model to learn
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Fig. 1: Triplet loss minimizes the distance between anchor and a positive exam-
ples and maximizes the distance between the anchor and negative examples [32].
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Fig. 2: Triplet-style training learns similarity-based features using three example
types: anchor, positive, and negative. Features are extracted via the DL model,
optimizing similarity between anchor and positive samples while minimizing it
for negative samples.

how to distinguish between similar examples that belong together and those that
do not. Consider a target scenario where the goal is to find the “closest” match
from a set of past cases. In this context, the goal is to teach the model that the
correct (or similar) case should be closer to the target than any incorrect (or
dissimilar) case. Concretely, this is achieved by organizing the training data into
triplets, each consisting of a target example (called the anchor, denoted by a),
a similar example (the positive, denoted by p), and a dissimilar example (the
negative, denoted by n). During training, the model is encouraged to pull the
anchor and positive examples close together while pushing the negative example
farther away, as shown in Fig. 1. By continuously adjusting the model’s internal
parameters according to this rule, the model learns a representation that better
captures both underlying similarities and differences.

Fig. 2 shows how we apply this approach to the feature extractor network.
Features corresponding to anchor (Fa), positive (Fp), and negative (Fn) are ex-
tracted just before the classification layer and sent to the triplet loss estimator
function, which uses the proxy function for similarity-based distance estima-
tion, with an aim to keep similar features closer to each other (Fa and Fp) and
dissimilar features away from each other (Fa and Fn). A visualization of this op-



timization process is shown in Fig. 1, assuming at the start of the optimization
process the anchor and the positive features were far apart as compared to the
anchor and negative (Fig. 1(a)). The aim of this optimization is to bring anchor
and positive feature close together and push away the negative features, as shown
in Fig. 1(c). Following is the mathematical representation of the constraint used
for this optimization

||f(xa
i )− f(xp

i )||
2
2 +m < ||f(xa

i )− f(xn
i )||22

∀f(xa
i ), f(x

p
i ), f(x

n
i ) ∈ τ

(5)

Here, xa
i , x

p
i , and xn

i are an anchor, a positive, and a negative example, re-
spectively; f is a functional form of feature extraction network, m is a margin
imposed on the distance between positive and negative pairs, meaning these
pairs need at least be m distant, and τ is the set of all possible triplet pairs
defined in the training set. During training, the triplet loss is written as

Ltriplet = max(0, d(fa, fp)− d(fa, fn) +m) (6)

For a given triplet of examples (xa, xp, xn), the network generates the cor-
responding feature vectors fa, fp, and fn, which are then passed to the chosen
distance function d (i.e., Pairwise Distance, Cosine Similarity, or Sinkhorn Diver-
gence), which consists of three parts: 1) d(fa, fp) is minimized, ensuring similar
instances cluster together in feature space, 2) d(fa, fn) is maximized, ensuring
that dissimilar classes remain well-separated, and 3) the margin m prevents
trivial solutions where the network pushes all cases arbitrarily far apart by only
activating the loss function when the negative sample is closer to the anchor
than the positive by less than m.

We integrate triplet loss alongside cross-entropy loss (LCE) with two inde-
pendently controlled weight coefficients α and β as shown in Fig. 2. As a result,
the overall loss formulation for each proxy function can be estimated as:

Ltotal = αLtriplet + βLCE (7)

4 Evaluation

4.1 Research Hypotheses

We evaluate the following hypotheses in our experiments:

1. The triplet-style, proxy-guided approach will achieve greater clas-
sification accuracy than the analogous DL-only approach. This may
not be the case for all proxy functions, but there will exist a parameteriza-
tion for every evaluated dataset such that our DL-CBR model outperforms
the DL-only model.

2. More sophisticated proxy functions will yield superior quality fea-
tures, as shown by higher case-based classification accuracy. Thus,
Sinkhorn Divergence will lead to the highest classification accuracy, and
Pairwise Distance (being the simplest method) will lead to the lowest over-
all accuracy.
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Fig. 3: The case base is constructed from training set images, and the case-based
classifier assigns classification labels by comparing query features with stored
cases based on Manhattan distance.

4.2 The DL-CBR Testbed System

These experiments use AlexNet [24] and pretrained DenseNet121 [18] architec-
tures for the feature extractor model, with the Geomloss library [15] used to
implement a Sinkhorn distance loss calculation compatible with the PyTorch
environment [29]. During training, we keep the value of β fixed to 10 and vary
the value of α from 5 to 20 in increments of 5 in our experiments. The values
used for α and β were found to be empirically useful based on preliminary ex-
periments but could feasibly be normalized such that α = 1 − β; we do not
present α = 0 results, as these would repeat DL-only results that have been pre-
sented in other papers (e.g., [39]), with no triplet loss component. The case-based
classifier is a retrieval-only system (no adaptation) that uses an unweighted simi-
larity metric based on normalized Manhattan distance for similarity assessment;
such an approach facilitates straightforward explanations based on case presen-
tation. The case base is initialized using a random selection of examples that
are passed through the DL model to generate representative feature vectors that
are extracted from the penultimate network layer (Fig. 3). Once the case base
is established, test images from the same dataset are processed through the DL
model, extracting their features in an identical manner. These extracted features
serve as query cases for the case-based classifier. The case-based classifier then
determines the class label of each test query by comparing its feature represen-
tation to stored cases in the case base, using the similarity metric to identify the
closest match.

4.3 Evaluation Datasets and Relevant Parameters

During training for all datasets, batches of triplets are created that associate
anchor examples at random with a positive example from the same class and a
negative example from an unlike class. Pairwise Distance and Cosine Similarity
values are calculated as described above, and Sinkhorn Divergence values are
also calculated as described above, following a softmax operation performed on



the intermediate activations. We train and evaluate the model on each of the
following datasets:

MNIST: The MNIST (Modified National Institute of Standards and Tech-
nology) dataset [12] contains images of 70,000 handwritten digits from 0 to 9,
paired with the name of the numeral. We train an AlexNet [24] model from
scratch on the training set of 60,000 images and test on 10,000 test set images.
For the results shown below, we use a batch size of 128 and a learning rate of
3 ∗ 10−4 with Adam optimizer (batch size of 256 with learning rate of 3 ∗ 10−5

for Sinkhorn Divergence, as using the other parameters resulted in errors using
the Geomloss library). We train the model for 30 epochs and do not use early
stopping. Mean and standard deviation values are calculated by segmenting the
10,000 test examples into separate trials and then conducting each end-to-end
experiment (including training) three times, resulting in thirty overall test trials
for reliable mean and standard deviation calculation.

AwA2: . The Animals with Attributes 2 (AwA2) dataset contains 37,322 im-
ages distributed across 50 classes [40]. Experiments using this dataset enable
comparison with recent work on feature extraction for CBR [39]. In these trials,
a training set of 4096 examples is randomly selected from all possible training
examples in the dataset; the pretrained DenseNet121 [18] model (as in [39]) is
trained with the same batch size and learning rate as MNIST. During evalua-
tion, 10,000 test images are selected at random and divided into sets as in the
MNIST evaluation, again producing thirty overall trials.

CIFAR-10: The CIFAR-10 dataset [23] consists of 60,000 color tiny images
with 6000 images per class for 10 classes. In the experiments, we use the entire
training set to train an AlexNet model from scratch. We use a batch size of 128
and a learning rate of 3 * 10−3 with Adam optimizer. We trained the model for
100 epochs without early stopping. For the results shown below, test image sets
are again selected and segmented as for MNIST evaluation.

5 Results and Discussion

Experimental results are displayed in Figs. 4, 5, and 6. In numerous instances
the case-based classifier using extracted features outperforms the analogous DL-
only model, supporting hypothesis 1; surprisingly, the proxy-guided model also
achieves higher classification accuracy on AwA2 (88.7 ± 1.4%) than our best-
performing DL-CBR model to date (87.4 ± 0.5%) and the analogous DL-only
model (85.9 ± 2.4%), underscored by a student T-test p-score of p ≤ 0.0013
which indicates a high probability of significance. Additional fine-tuning might
further increase this improvement. However, as long as accuracy is sufficient,
another motivation for the case-based approach is the ability to explain decisions
in terms of cases.

Concerning the proxy loss functions, results show that there is not a one-size-
fits-all similarity metric that performs best for all datasets. We hypothesized that



Fig. 4: Classification accuracy on the MNIST dataset, for different α coefficient
values. Error bars represent one standard deviation.

Sinkhorn Divergence might best capture important similarity characteristics, but
this is not necessarily the case. Sinkhorn Divergence does appear to lead to very
consistent model performance, regardless of the relative contributions of triplet
and cross-entropy loss terms, but Cosine Similarity appears to produce at least
as strong performance. Across the board, Pairwise Distance leads to the least
accurate model performance, as expected.

Finally, while the experiments show reasonable standard deviation values
overall, for isolated trials the model fails to converge or otherwise exhibits ex-
treme, out-of-distribution behavior. We consider these as outliers, but they un-
derscore the need to train and evaluate this model carefully, potentially using
multiple iterations, to ensure useful feature extraction post-training.

Evaluation on MNIST: In our tests for the MNIST dataset, the proxy-guided
system consistently achieves comparable or greater classification accuracy com-
pared with the DL-only model (Fig. 4). Often, this improvement is statistically
significant. This supports that the combination of triplet-style training and the
proxy loss function benefits case-based classification compared to the end-to-
end DL approach, especially given that the DL-only accuracy often decreases
as the contribution of the similarity-based loss function increases. One notable
exception is when Pairwise Distance is used, but that model consistently fails to
converge, exhibiting random-guess accuracy. Sinkhorn Divergence appears to be
the best proxy function, with Cosine Similarity a close second.

Another interesting trend is the relative flatness of the DL-CBR trend lines
in general; this suggests that the relative contribution of the similarity loss is



Fig. 5: Classification accuracy on the AwA2 dataset, for different α coefficient
values. Error bars represent one standard deviation.

relatively unimportant. This could mean that the relative contribution of the
proxy and cross-entropy loss components is less significant to the DL model
during training than the fact that both are present. Alternatively (or perhaps
additionally), the case-based classifier might be sensitive to subsets of features
developed by both the proxy and cross-entropy loss components in such a way
that their relative contribution does not impact classification accuracy.

Evaluation on AwA2: For AwA2, Cosine Similarity yields higher classification
accuracy across the board relative to Sinkhorn Divergence; Pairwise Distance is
once again the least performant metric. Interestingly, it is less clear-cut whether
the DL-CBR approach outperforms the DL-only model when using Cosine Sim-
ilarity (for Sinkhorn Divergence, it performs worse). However, given that the
case-based classification accuracy is higher for the proxy-guided approach than
for other DL-CBR approaches for the same experimental parameters [39], it
supports the proxy-guided approach.

Trends for the AwA2 dataset are generally flat, similar to the MNIST re-
sults. Again, this suggests that the relative contributions of the proxy and cross-
entropy loss terms are relatively inconsequential. Especially in light of the greater
image resolution and class variety present in AwA2 relative to MNIST, this sug-
gests future work to contextualize these findings and focus specifically on the α
and β coefficients (e.g., setting one of them to zero during training).

Evaluation on CIFAR-10: Performance on CIFAR-10 arguably does not
support our first hypothesis, as all DL-CBR models perform no more accurately



Fig. 6: Classification accuracy on the CIFAR-10 dataset, for different α coefficient
values. Error bars represent one standard deviation.

than the corresponding DL-only model. Our second hypothesis is challenged as
well, with Pairwise Distance being the most useful proxy function. That said,
general trends bear broad similarities to the AwA2 results, and the range of all
accuracy values is less than 5%. Considering this in the context of the additional
explainability offered by using a DL-CBR system rather than an end-to-end DL
model, the proxy-guided approach may still be useful.

To explain these results, we hypothesize that CIFAR-10’s high intra-class
variability and small input image size makes it difficult to define feature similar-
ity. Images in the same category (e.g., “bird”) can differ drastically in species,
color, pose, and scale, forcing classification to rely more on context and texture
than subject features. Additionally, the dataset’s limited size struggles to cap-
ture the full diversity required for robust feature learning. While deep learning
can leverage sheer data volume, the case-based models depend on clearly defined
features – a challenge given CIFAR-10’s variability and constrained dataset size.

6 Conclusions and Future Work

This paper presents a novel method for training DL models for feature extrac-
tion, using similarity-focused proxy functions in the DL training loss to encourage
generating features that are useful for case retrieval. In our experimental results,
this approach is successful relative to the analogous DL-only model for multi-
ple domains, and is capable of outperforming our previous DL-CBR approaches
(e.g., [39]). Considering the three evaluated similarity functions, Pairwise Dis-
tance is generally the least effective (though it had some success with CIFAR-10),
Sinkhorn Divergence is the most consistent, and Cosine Similarity is appealing
in its combination of simplicity and effectiveness. Avenues for future work in-
clude considering potential parameterizations for increasing classification accu-



racy, including different neural architectures, other loss functions or methods for
calculating the aggregate loss value, and differentiable CBR methods that might
allow for direct inclusion of CBR performance as a loss term itself. Additional
work involves evaluating this model for additional datasets and distance metrics
and developing practical approaches for selecting metrics for different domains.
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