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Automated Ice-Bottom Tracking of 2D and 3D Ice
Radar Imagery Using Viterbi and TRW-S

Victor Berger
John Paden

Abstract—Multichannel radar depth sounding systems are able
to produce two-dimensional (2D) and three-dimensional (3D) im-
agery of the internal structure of polar ice sheets. Information such
as ice thickness and surface elevation is extracted from these data
and applied to research in ice flow modeling and ice mass balance
calculations. Due to a large amount of data collected, we seek
to automate the ice-bottom layer tracking and allow for efficient
manual corrections when errors occur in the automated method.
We present improvements made to previous implementations of the
Viterbi and sequential tree-reweighted message passing (TRW-S)
algorithms for ice-bottom extraction in 2D and 3D radar imagery.
These improvements are in the form of novel cost functions that
allow for the integration of further domain-specific knowledge
into the cost calculations and provide additional evidence of the
characteristics of the ice sheets surveyed. Along with an expla-
nation of our modifications, we demonstrate the results obtained
by our modified implementations of the two algorithms and by
previously proposed solutions to this problem, when compared to
manually corrected ground truth data. Furthermore, we perform
a self-assessment of tracking results by analyzing differences in
the estimated ice-bottom for surveyed locations where flight paths
have crossed and, thus, two separate measurements have been
made at the same location. Using our modified cost functions and
preprocessing routines, we obtain significantly decreased mean
error measurements from both algorithms, such as a 47 % reduction
in average tracking error in the case of 3D imagery between the
original and our proposed implementation of TRW-S.

Index Terms—Feature extraction, glaciology, ice thickness, ice
tracking, radar tomography.

I. INTRODUCTION

HE Center for Remote Sensing of Ice Sheets (CReSIS),
based at the University of Kansas, designs and develops
radar instrumentation that allows for wide-coverage remote
sounding and imaging of the ice sheets, snow, and sea ice in polar

Manuscript received September 16, 2018; revised April 3,2019; accepted July
10, 2019. This work was supported by NSF under Grant 1443054. The work
of V. Berger, M. Al-Ibadi, and J. Paden was supported by NASA under Grant
NNX16AHS54G. ArcticDEM was provided by the Polar Geospatial Center under
NSF OPP awards 1043681, 1559691, and 1542736. (Corresponding author:
Victor Berger.)

V. Berger, M. Al-Ibadi, S. Chu, and J. Paden are with the Center for Remote
Sensing of Ice Sheets, University of Kansas, Lawrence, KS 66045 USA (e-mail:
victorberger @ku.edu; Mohanad.Alibadi @ku.edu; guixien@gmail.com; paden
@ku.edu).

M. Xu, D. Crandall, and G. C. Fox are with the University of Indiana,
Bloomington, IN 47405 USA (e-mail: mx6@iu.edu; djcran @indiana.edu; gcf@
indiana.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2019.2930920

, Mingze Xu, Mohanad Al-Ibadi, Shane Chu, David Crandall,
, Senior Member, IEEE, and Geoffrey Charles Fox

regions. The data acquired by these sensors provide information
about the basal topography of the ice structures of the surveyed
region, from which measurements such as ice thickness can be
derived. Analysis of these polar topography data helps determine
the contribution of these icy bodies to the present sea level
using the surface mass balance and discharge method and can
be factored into ice-flow modeling studies to predict their future
impact on sea level [1].

We use Multichannel Coherent Radar Depth Sounder [2]
data to form images of the subterranean ice topography. The
radar employs a cross-track antenna array where each antenna
element is individually sampled. The data from each element
is independently pulse compressed to resolve targets in range
and synthetic aperture radar (SAR) processed to resolve targets
in along-track. Finally, the individual SAR images from each
element are combined using array processing to resolve targets
in the elevation angle dimension [3]. Data products include two-
dimensional (2D) SAR images where only the nadir elevation
angle is resolved and three-dimensional (3D) SAR tomographic
images where targets from all angles are resolved. In both of
these data product formats, the most relevant features are the
ice-surface and ice-bottom layers. The former is the interface
between the air and the ice; the latter is the interface between
the ice and the bedrock or liquid water underneath. The location
of these layers in each echogram is used in the calculation of the
ice thickness of the surveyed area, and thus some form of layer
tracking is required.

In a typical deployment of the CReSIS depth sounding sys-
tems, thousands of kilometers of terrain are covered per day.
Accurate manual tracking of 2D echograms at this scale is a slow
and time-consuming process, and effectively impossible in the
case of 3D imagery where hundreds of thousands of images are
generated (if we view the 3D imagery as a stack of 2D images).

Automated ice-layer tracking on 2D radar imagery has re-
ceived attention from researchers including Gifford et al. [4],
who proposed edge-based and active-contour-based iterative
methods for tracking the interfaces. A distance-regularized
level-set technique was proposed by Rahnemoonfar et al. [5],
while Crandall e al. [6] posed this tracking as an inference
problem on a probabilistic graphical model, a hidden Markov
model (HMM)), to incorporate several known constraints of the
ice layers, and used the Viterbi algorithm [7] to solve it. A
similar, more general model was suggested by Lee ef al. [8],
but they used Markov Chain Monte Carlo (MCMC) to solve the
inference problem more accurately. All of the aforementioned
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techniques allowed for the ice-surface and ice-bottom layers to
be simultaneously detected.

Carrer and Bruzzone [9] propose a technique for extracting
internal ice layers in radar imagery using a local scale HMM and
performing inference with the Viterbi algorithm. However, this
method is not suitable for explicit extraction of the ice-bottom
layer because it identifies several similar boundaries within
the ice, whereas the solutions proposed in this paper aim to
track only the ice-bottom layer while purposely ignoring other
boundaries. Smock and Wilson [10] also present a method
for identifying the ground surface and other layer boundaries
in ground-penetrating radar data, using a reciprocal pointer
chain technique designed as an improvement over the standard
Viterbi algorithm. However, their task is not specialized to ice
sheet layer tracking, and, thus, the models they use are very
different.

Specifically for ice-bottom tracking in 3D imagery, Xu et al.
[11] define an inference problem using a Markov random field
(MRF) and apply sequential tree-reweighted message passing
(TRW-S) [12] to solve it. The performance is compared to a
Viterbi algorithm with modifications specific for the 3D imagery.
They later proposed a deep convolutional and recurrent neural
network that achieved improved results [13].

In this paper, we present adaptations to the aforementioned
HMM-based and MRF-based solutions described in [11], ad-
justing the cost functions to include additional domain-specific
knowledge and evidence regarding polar ice sheets. We apply the
adapted algorithms to CReSIS data, and perform an assessment
in terms of tracking accuracy, calculated as the average absolute
difference between our automated results and manually tracked
ground truth data, and compare against previously proposed
algorithms. We also check the self-consistency of the 3D al-
gorithms by comparing results where flightlines cross, such that
two independent measurements have been made at the same
location.

For the solutions proposed in this paper, we make the as-
sumption that the ice-surface layer is known a priori since
there generally exist accurate ice-surface estimates (such as
ArcticDEM [14] and Bedmap?2 [15]) based on satellite imagery
for surveyed locations. The location of the ice-surface is used as
an input to the ice-bottom trackers and defines portions of the
cost function as explained in Section III.

The remainder of this paper is organized as follows. In
Section II, we describe the 2D and 3D formats of data on which
layer tracking is performed, along with an overview of the track-
ing framework. In Section III, we define our modifications to the
original models, and in Section IV we present our algorithms
used to perform inference on these models. In Section V, we
present and analyze experimental results. In Section VI, we
briefly look at a geostatistical analysis of our tracked results.
The conclusions are then summarized in Section VII.

II. BACKGROUND

A. 2D Imagery

In a 2D image or echogram (e.g., Fig. 1), the subterranean ice
structures are captured along the flight profile. The horizontal
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Fig. 1. Example of 2D echogram. Notice that the ice-surface and ice-bottom
merge on the right when no ice is present.
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Fig. 2. Illustration depicting the axes of the images relative to the radar
platform. The 2D echograms are vertically oriented and lie in the plane formed
by the fast time and along-track axes at zero cross track.

axis represents the along-track dimension, where each column
is a range-line. The vertical axis corresponds to the fast-time
dimension, where each row is arange bin. The vertical dimension
is directly related to the depth of the subterranean ice structure.
Fig. 2 illustrates the image axes with respect to the aircraft.
The pixel intensity of the radar image is proportional to radar
scattering intensity, with darker representing a stronger scat-
tering signal. The array processing algorithm for 2D imagery
uses a filter to estimate the intensity of targets in the nadir
direction while suppressing targets from off nadir. The minimum
variance distortionless response (MVDR) algorithm is used for
2D images in this paper [16].

In Fig. 1, the very dark, continuous line near the top is the
ice surface, and the dark erratic line near the middle is the
ice-bottom boundary. Notice that these two interfaces merge
around range-line 1900, indicating the beginning of a region
with no ice. Furthermore, notice the layer under the ice-surface
that follows its shape: this is the first surface multiple and is
always located at twice the time delay as the surface. This is an
artifact that may confuse the tracker and create a false positive,
complicating the layer tracking process. A simple solution for
mitigating the effects of this undesirable feature is described in
Section III.
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Fig. 3. Example of a 3D image slice. Elevation angle bin 33 is the nadir.
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Fig. 4. Sequence of cross-track slices generates a 3D image of the surveyed
terrain.
B. 3D Imagery

The 3D images represent a sequence of cross-track images (or
“slices”) of the terrain. In each slice, the horizontal axis displays
the cross-track elevation angles discretized into direction-of-
arrival bins, and the vertical axis depicts the fast-time dimen-
sion in the same manner as a 2D echogram where each row
corresponds to a range-bin. Fig. 3 shows a sample image slice,
and Fig. 4 shows how the slices fit together relative to the radar
platform coordinate system. The multiple signal classification
(MUSIC) array processing algorithm is used to generate the
images [17]. The color of each pixel represents the MUSIC
cepstrum, which is loosely related to how likely a scatterer is
present. In Fig. 3, yellow indicates a larger cepstrum value,
which is associated with increased likelihood, and blue indicates
alower cepstrum value. The first surface multiple is also present
in most slices of the 3D imagery but tends to be less detrimental
to automated tracking as compared to 2D imagery because it is
seen only in the nadir elevation angle bin.

C. Layer Tracking Framework for 2D and 3D Imagery

While both formats of radar imagery capture the subterranean
ice sheet structure of the surveyed area, an important difference
between the two is that there exists a strong correlation in two
dimensions for the ice-bottom in the 3D image: It tends to vary
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Fig. 5. Diagram illustrating the main inputs of the automated layer-tracking
systems. The location of the ice-bottom layer, shown here as a continuous blue
line overlaid on a 2D echogram, is the output for both 2D and 3D trackers.

smoothly in both elevation angle and along-track dimensions.
On the other hand, no “third dimension” is available for the 2D
echograms. The 2D image is a subset of the 3D image and does
not have an elevation angle dimension; it corresponds to just the
nadir elevation angle bin (bin 33 in Fig. 3) from each 3D slice.

As such, different algorithms produce optimal layer tracking
results for each image type. In the 2D case, the reduced dimen-
sionality of the data allows for an exact solution to the cost
minimization to be found using the Viterbi algorithm (although
less information is supplied to the minimization, and so the result
is generally worse than the 3D case [11]). In the 3D case, the
algorithm with the best results in this study exploits the layer
correlation in both dimensions.

We constrain the ice-bottom layer to be single-valued every-
where with respect to the elevation angle and along-track di-
mension, meaning that only one row can be the correct boundary
position in each column of the image matrix. In a physical sense,
this is the same as assuming that the subterranean ice structure
contains no overhangs or cave-like features from the perspective
of the radar. Fig. 5 provides a summary of the other inputs and
constraints to the layer tracking software.

III. GRAPHICAL MODEL FOR LAYER TRACKING

First consider the 2D labeling problem, where the goal is to
trace the location of the ice bed. More concretely, given a N,.-
by-N, radar echogram intensity image matrix /, our goal is to
identify, for each column (or range line) c of I, the corresponding
row coordinate s, through which the ice bed passes. The tracking
output S = (s1,S2,...,Sn,) is, thus, in the form of an N,-
dimensional vector, where NV, is the number of range-lines in
the input image and s; € {1,..., N,.} where N, is the number
of rows or range bins. This ensures that exactly one row will be
selected as the ice-bottom label for every column of the image.
A simple approach is to define a model that encourages each
column to simply choose the row with the strongest intensity
within that column, in other words,

se = arg min, {—1I (r,c)}. (1
The overall cost function for /N columns is

E(8) =Y —I(s., o). 2)

c=1
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However, radar echograms are noisy observations of the true
ice structure, and this simple technique will often lead to layer
boundaries that are physically implausible (e.g., that are discon-
tinuous). Successful layer tracking, thus, requires balancing the
noisy evidence from the echogram with known prior information
about the typical properties of polar ice. In previously published
work, Crandall er al. [6] poses the echogram layer-tracking
problem as an inference problem on a statistical graphical
model, which is designed for combining evidence from multiple
sources. For both 2D and 3D imagery, the authors assign a unary
cost Yy to every valid pixel, which represents the cost for the
ice-bottom layer to pass through that pixel, just as in the simple
model above. This unary cost is augmented to encode additional
constraints, such as marking a labeling as invalid (infinite cost)
if the boundary passes above the known ice-surface layer, or
if it is at the same position as the ice-surface layer at a point
where a nonzero ice thickness is known to exist. In addition, a
binary cost function assigns a cost 15 to every pair of adjacent
columns (range-lines). This binary cost enforces “smoothness”
of the layer boundary by penalizing sharp discontinuities (very
different rows assigned to adjacent columns).

This formulation suggests an alternative optimization prob-
lem that should find an S' to minimize the sum of all of these
unary and pairwise costs:

N peEP
E (S) = Z’l/JU (Sc, C) + Z wB (Sci7 SC]') (3)
e=1 p=(cic;)

where P is the set of all 2-tuples that represent neighboring
columns.

This combination of unary and binary cost functions defines
a HMM, which can be solved efficiently and exactly with the
Viterbi algorithm, as we discuss below. Note that the form of
(3) follows the minimization of the negative logarithm of the
probabilities which is equivalent to the maximization of the
posterior probability. This form of the inference can also be
viewed as a cost minimization problem.

In the case of a N,.-by-Ny-by-N, 3D image, the tracking
output is a Ng-by-NN, matrix where each element represents
the output for a given column and N, represents the number
of elevation angle bins in the 3D image matrix. The value of
N, still represents the number of range-bins, and the value of
N, still represents the number of range-lines which is equal
to the number of N,.-by-Ny slices that compose the 3D space.
In this case, the pairwise term enforces smoothness between
adjacent columns in the slice (elevation-angle bins) and between
adjacent columns between slices (range-lines). One can visual-
ize these constraints as a grid graph since the label of every
column now depends on its neighbors both within and across
slices. This is a MRF, which, unlike an HMM, cannot be solved
efficiently using Viterbi. In fact, MRF inference is NP-hard
in general, which means that no efficient exact algorithm is
known to exist. Fortunately, very good approximate algorithms
are known, including the TRW-S algorithm used by [11].

Next, we present an expanded explanation of this cost as-
signment process, as well as our proposed modifications to the
Viterbi and TRW-S algorithms used in [11].

A. Unary Cost Function

The unary cost function )y assigns a cost for labeling
an individual column with a given row label. Intuitively, this
cost function encourages the estimated layer boundary to pass
through high-response areas of the echogram, while also enforc-
ing physical constraints about ice layers that can be expressed
within single columns of the echogram. In particular, our unary
cost function consists of five types of terms.

1) A radar return strength term that encourages layers to lie

along response peaks of the echogram.

2) A hard constraint on the ice bed that forces it to be below
the ice surface unless the ice thickness is known to be zero.

3) Soft constraints on ice thickness that encourage the bed to
be not too close to the surface.

4) Atermthat strongly encourages the ice bed to be consistent
with known ground truth points, if available.

5) A term that weakly encourages agreement with weaker
evidence about ice thickness (e.g., based on mass conser-
vation models [18]). The unary cost for any column c is
just a sum of these five terms:

Yy (s, ) = Ysurr(S, ¢) + Ysinc(s, ¢) + watar(s,c)
4

where the w variables are weights that are tuned via hyperpa-
rameter optimization.

We now describe each of these terms in detail.

1) Radar Return Strength, 1»srnc: Previous work [11]
measures the sum squared difference in the image pixel intensity
relative to a template of an ideal layer return. The template was
found through an automated training sequence using the a priori
surface information. Although it is data dependent, the template
invariably has a peak in the center with decreasing values toward
the edges of the template. Because the term measured the squared
distance to the template, a peak response in the imagery with the
exactly same intensity values produces the lowest cost.

We modified the previously proposed template term in order
to better use the dynamic range of the imagery. A problem
with using the squared distance to the template is that the peak
intensity from the ice-bottom layer varies and larger intensities
generally indicate a better measurement (since these correspond
to greater signal-to-noise ratios). This meant that values with
a larger peak intensity than the template would actually be
penalized. To better handle peak intensity variability, we now
use a correlation operation that multiplies the template with the
image:

+ YExTRA (S, ¢) + WREPYREP (S, €)

dsine (s,0) = — > T(s+p,0)p(p) )

peT

where [ is the input image and p € T = {-5,—4,-3,...,5}
refers to the pixel index of the correlation function, and p(p)
is the correlation function which is now fixed to sinc (p/3.33),
which for £5 pixels approximately corresponds to the midpoint
in the first minimum on either side of the sinc function peak
at p = 0 as shown in Fig. 6. The truncated sinc waveform was
chosen because it is symmetric and has a single peak in the
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center. Improved performance is likely possible by training on
the waveform shape.

2) Surface and Thickness Constraint, 1 syrp: An obvious
physical constraint is that all points of the ice-bottom layer must
be at or below the ice-surface and that the two layers may only
be at the same range if no ice is present at that position. Since
ice-mask datasets, which show where ice is present, are available
for most regions surveyed by CReSIS (e.g., Randolph Glacier
Inventory [19]), we define ¥)sygrr to:

1) merge the ice-bottom to the ice-surface where there is no

ice (i.e., Mico(c) = 0);

2) force the ice-bottom to lie in a certain range relative to the
surface if close to the ice margin (i.e., near the transition
between no-ice and ice);

3) have no effect when more than a certain distance away
from the ice margin.

In particular,

00, § > Tsurt(€) Or (8 # Squre(€)
and Mﬁlt (C) = 0)

07 Ssurf (C) > 8 > Sgurf (C) + Mﬁlt (C)

YsuRr (5,¢) =

(6)
where s represents the row index of the pixel of interest, Sg¢(c)
is the row index of the ice-surface layer at column ¢, and Mg (c)
is a filtered version of the binary ice-mask M;c.(c). This filtered
version is obtained by the following:

1) eroding the mask by 2 pixels;

2) filtering with a weighted boxcar window;

3) setting values above 90 to infinity.

The filter for 2D imagery is scaled by (90/3.7) and is applied
only in the along-track dimension. The filter for 3D imagery is
scaled by (90%-°/3.7) and is applied in the elevation angle di-
mension and then again in the along-track dimension effectively
creating a 2D filtering of the mask. The following shows the
effect of these steps on an ice edge boundary for 2D imagery. In
this case, the ice mask is a vector corresponding to each column
of the 2D image.

1) Erosion of the mask by 2 pixels: THE binary mask Mj.e =

[0011111]becomes[0000111].
2) Filtering with a boxcar window: [00 00 1 1 1] becomes
[0024 49 73 97 122].

3) Infinity threshold at 90: [0 0 24 49 73 97 122] becomes
Mgy, = [0024 49 73 0o o).

This process takes into account the fact that a relatively
smooth transition is expected between icy and nonicy regions
of the terrain, and restricts the ice-bottom to a range of values
near the ice margin. The choice of the particular filter coefficients
and threshold were manually chosen and have not been tuned. A
geostatistical analysis of actual ice thickness distributions near
the ice margin would likely produce improved results and is
discussed in Section VI.

3) Ice Surface Repulsion, 1 ggp: Because the ice-surface
return usually generates a strong and consistent region of high-
intensity pixels in the imagery, as is the case in Fig. 1, an ice-
surface repulsion term )grgp is added to the unary cost function
to prevent the tracker from incorrectly labeling the ice-surface as
the ice-bottom. This is done by raising the unary cost of pixels
that are within a certain maximum sensory distance (ansp)
from the ice-surface. An ice thickness close to zero would cause
a large increase in cost, defined by a maximum cost (ayic) pa-
rameter, which would prevent the tracker from selecting it as the
ice-bottom.

A shifted exponential decay function was chosen to ensure
a smooth cost increase as a function of proximity to the ice-
surface, as can be seen in Fig. 8. This term is calculated as

0, Ay > amsp
—AxAy

YrEP (8,¢) = {

aMe * € — apmc * e MOVSD | otherwise

(N
where Ay = sque(c) — s s the vertical pixel distance between
Ssurt(¢), the row index of the ice-surface layer at column ¢, and
the pixel of interest s, and A is a manually chosen exponential de-
cay constant. Yrgp is different from ¥gygrr as it will gradually
increase the unary cost of pixels as they vertically approach the
given ice-surface layer regardless of the ice-mask value of the
column of interest, whereas 1suyrr enforces a hard constraint
that is either positive infinity or zero and effectively restricts the
range of allowed values for s.

4) Ground Truth Constraints, 1 gr: Known layer positions
may be available for some columns of an echogram. To account
for potential small inaccuracies in the ground truth, we do not
use a hard constraint, but instead use a squared distance term
that strongly encourages the estimated row for each column to
be close to the ground truth:

Yar (s,¢) = (s — sar () (8)

where s represents the row index of the pixel of interest and sg
is the row index of the ground truth point. When ground truth is
not available, this term of the unary cost function is simply set
to 0. The values of the 1)gr term are demonstrated in Fig. 7.
These ground truth layer positions can come from a variety
of different sources. Ground truth can be manually added by
a human operator. For 2D imagery, this is not done before
the automated tracking is run. However, ground truth points
are automatically found by finding all intersections between
the flight path of interest and flight paths of previous surveys.
Frequently, a given location will have been imaged and labeled
before, and the point in which the new flightline crosses the old
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400 ~ B. Binary Cost Function
/ ' The binary cost is a function of the row labels assigned to
300 / adjacent columns and is designed to encourage smoothness
y of estimated layer boundaries, increasing the likelihood that
-9 200 / transitions, which generate smoother layers, will be selected by
P assigning these a lower cost. A smooth interface is generally a
100 t _ reasonable assumption for the bottom of the ice sheet.
- In previous efforts, the implementation of this binary cost
0 —_— . . term was set to prioritize flat surfaces in the coordinate systems
0 5 10 15 20 of the 2D and 3D imagery. However, since the 3D imagery is
s-GT in a cylindrical coordinate system native to the radar sounder
Fig. 7. Unary cost of every pixel in the input image is increased according to processing, this “flat” surface did not represent a flat surface in

the squared vertical distance to ground truth points in the same column of the
image matrix, if they exist.
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Fig.8.  Shifted exponential decay of the yr gp term as a function of the vertical

distance Ay between the pixel of interest and the ice-surface layer. The selected
parameter values are anisp = 50, apic = 200, and A = 0.075.

will already have ice-bottom depth information associated with
it, which can then be used to help the tracker. These flightline
intersections are commonly known as crossovers, and can also
be used in determining the error associated with layer tracking
results.

For the 3D imagery, ground truth points are taken from the
2D tracking process by using the ice-bottom layer from the 2D
imagery in the nadir elevation angle bin of the 3D imagery.
Although this is not strictly required by the 3D algorithm, in all
the results presented in this paper, the nadir tracked bin from 2D
imagery is used as ground truth to the 3D imagery and we did
not evaluate the performance without this ground truth added in
for 3D imagery.

5) Ground Truth Estimates, Vg xTRrA: Another potential
source of evidence is a priori estimates of the ice-bottom that
can be used as weak evidence by the tracking algorithms. These
estimates can be handled similarly to the ground truth constraints
above, except that they are added to the cost function with a lower
weighting to reflect their lower reliability. These estimates can
be obtained, for example, from existing ice thickness models
based on ice flow dynamics and mass conservation [18].

Cartesian space. A flat surface in Cartesian coordinates curves
downward toward the edges of the 3D imagery (see Fig. 3 for
an example of this effect). Also, if the aircraft altitude changes,
both the ice-surface and ice-bottom will change together with
altitude.

For this reason, in both 2D and 3D datasets, we modified the
cost function to assign the lowest transition costs to rows that
follow the range-slope of the ice-surface. In the 3D imagery
scenario, although this is still not a flat surface in the Cartesian
coordinate system, this is a flatter and more realistic approxima-
tion of the expected shape of the ice-bottom and computationally
simpler than calculating the exact shape of a flat ice-bottom in
Cartesian space, which would need to account for ice refraction
from a nonflat ice-surface layer. The new binary cost between
two adjacent columns ¢; and ¢; is given by

- Ssurf (Cj)))2

€))
where 5., and s, are row indices assigned to adjacent columns,
and Sg.£(¢) is the row assigned for the ice surface for a column c.
A scaling factor wp is used to define the weight of this smooth-
ing term. In the 2D imagery case, this modification is not as
helpful since a flat (i.e., perfectly horizontal) ice boundary in
a 2D echogram approximately depicts flat topography of the
surveyed terrain, because it does not account for the change
in radar wave propagation speed in ice versus air. However,
although it is a small correction, there is often a correlation
between the range-slope of the ice-surface and the shape of
the ice-bottom layer [20], [21]; thus, this cost term is still
used. A promising approach for removing this assumption from
both tracking frameworks involves using empirically discovered
column-to-column transition probability distributions based on
a geostatistical analysis of the manually corrected data (see
Section VI).

- (Ssurf (Cz)

wB (Ciacjat) = wp * (Sc,; — S¢;

C. Data Preprocessing

The 2D image intensity exhibits a strong dependence on depth
in ice due to ice loss and spherical spreading loss which often
leads to a very large dynamic range between the surface and
bottom return intensities. In our modified version of the Viterbi,
we apply a simple detrending routine that normalizes the mean
intensity of each row or range bin. This helps the tracker in areas
where the bed echo is weak.
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(a) Example of labeled 2D echogram displaying the known ice-surface layer and the ice-bottom layer tracked by our implementation of the Viterbi

algorithm. This is the same data frame as presented in Fig. 1. Comparison between (b) old Viterbi and (c) new Viterbi implementations. The surface multiple
suppression and smoothness constraint enforced by the binary cost function allows for tracking even when discontinuities are present in the ice-bottom data, as
can be seen around the center of the echogram. (d) Echogram with weak bottom echoes and a comparison of (e) old Viterbi and (f) new Viterbi tracking. Data
detrending and surface multiple suppression allow for weak bed echoes to be accurately tracked.

Without detrending, clutter near the ice-surface is often so
strong that the ice-bottom layer tracker may jump to this signal
despite the surface-repulsion and layer smoothness constraints
enforced by the unary and binary cost functions of the tracking
algorithms. Fig. 9 be example of this. The first proposed Viterbi
solution [6], which worked with 2D images only, used image
gradients and cumulative max gradients to handle the dynamic
range.

While the 2D images are estimates of scatterer intensity from
MVDR, the 3D images output the MUSIC cepstrum and a
similar detrending procedure is not necessary because MUSIC
produces a muted dynamic range. In [11], which dealt with the
3D MUSIC images, a simple thresholding technique was used
to reduce the dynamic range. With this approach, every pixel
of the input image with a value greater than a certain manually
tuned threshold was made equal to the threshold value to reduce
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the difference between the pixel values of the ice-surface and
ice-bottom layers to prevent the automated tracker from select-
ing the (often) stronger ice-surface return as the ice-bottom.
The problem with thresholding is that the shape and strength of
the return are distorted by the thresholding and occasionally the
ice bottom would exceed this threshold and be clipped as well.
The thresholding step was removed for the 3D images in our
modified approach.

As previously mentioned, an undesirable feature present in the
2D imagery is the surface multiple, which is caused by a ringing
of the radar signal between the ice-surface and the aircraft. This
is also seen in the 3D imagery, but the tracking is not affected.
To mitigate the effect of the surface multiple in 2D imagery as a
false positive to the algorithms, we employed a simple method
of smoothing the input image around the areas in which the
surface multiple is located. This was achieved by replacing from
20 rows above to 20 rows below the surface multiple with a
blurred version of the image. The image is blurred with a 2D
Gaussian filter with standard deviation equal to 50 pixels and
kernel size equal to 201. It is possible to estimate the location of
the first surface multiple by doubling the two-way travel time of
the ice-surface. We have experimentally found that this approach
does not significantly slow down the tracking process or decrease
tracking accuracy even if the ice-bottom layer is located within
the rows to which the filtering was applied, due to the smoothness
and continuity constraints enforced by the unary cost function.
We did, however, find the rate of mislabeling the ice-bottom due
to the surface multiple to have been largely decreased.

Additionally, previous 2D tracking efforts performed layer
tracking on the 2D echograms of individual data frames. This
sometimes resulted in lower quality results near the edges of the
data frames because evidence from contiguous frames was not
being considered. For this reason, we horizontally concatenated
2D data frames before passing them to the Viterbi algorithm so
that all adjacent data frames (usually entire flights) are tracked
at once. This also increases the probability that the frames being
processed will include automated ground truth from crossovers,
although this tends to have a relatively local effect on improving
performance. The 2D echogram presented in Fig. 1 is composed
of two horizontally concatenated data frames (see title of figure).

D. Parameter Optimization

The weights and parameters in the cost functions (such as
the maximum sensory distance apsp and maximum cost ayic
of the Yrgp term described above) affect the accuracy of the
automated trackers, so their values were tuned for the best
possible performance of the algorithms. We used multistage
(multiresolution) grid-search and random-search [22] parameter
optimization techniques, supervised by the performance metric
of ice-bottom layer mean error (measured in absolute pixel
distance) when compared to a manually tracked training set.
Random search is a recent hyper-parameter global optimization
technique that has been shown to outperform exhaustive grid-
search methods in terms of accuracy and computational cost,
particularly for large parameter spaces where not all variables

TABLE I
PARAMETERS USED IN COST FUNCTION CALCULATIONS
WGT WREP Wg
Viterbi 10 150 55
TRW-S 11 24 33

have equal impact on the final error measurement and, therefore,
are not equally important to tune.

Due to the differences in image structure between the 2D
and 3D datasets, a different combination of optimal parameters
was found for each. Optimization was only performed using the
Viterbi algorithm for the 2D imagery and TRW-S for the 3D
imagery. The wgr and wrgp weighting variables of the unary
cost function were tuned, as well as the scaling factor wp for the
binary cost function. The optimal values found from this process
are shown in Table I.

IV. ALGORITHMS APPLIED TO LAYER TRACKING

Once both unary and binary costs have been assigned in the
manner described in the previous section, we apply the Viterbi
algorithm to the 2D and 3D imagery and the TRW-S algorithm
to the 3D imagery to estimate the lowest-cost label of the ice-
bottom, which is taken to be the final result.

Regarding time complexity, in the general case, the computa-
tion time of both TRW-S and Viterbi is quadratic in the number
of possible values of the hidden states (i.e., number of rows of
the echogram in our case) because the binary cost term must
consider all possible pairs of transitions. However, the fact that
our binary cost function is a Gaussian allows for the messages
to be computed much more efficiently, in time linear to the
number of hidden states, using generalized distance transforms
(also called the minimum convolution operation) [6], [23]. On
a typical desktop machine, the Viterbi algorithm takes about 2 s
to process a 50-km 2D image. For 3D imagery, the same frame
takes 20 s for our Viterbi implementation and around 1800 s for
our TRW-S implementation. Since the processing of radar data
is trivially parallelized by assigning an independent job to each
data frame, the additional computation time of TRW-S is not an
issue for our application.

A. 2D Imagery and the Viterbi Algorithm

For the 2D imagery, we follow the solution proposed by
Crandall et al. [6] of solving the HMM inference problem using
the Viterbi algorithm [7] to perform exact inference. Viterbi is
an efficient dynamic programming algorithm for finding the
highest probability sequence of hidden states in a finite-state
discrete-time Markov process. This algorithm is guaranteed to
return the global maximum likelihood path (the “Viterbi path”)
of an HMM. Our modified implementation is most like the HMM
in [11] and the description of the modifications is relative to this
implementation rather than the implementation in [6].
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B. 3D Imagery and the TRW-S Algorithm

As described above, in order to take advantage of the strong
correlation between consecutive slices of 3D imagery, Xu et al.
[11] proposes an MRF model. An MREF is similar to an HMM,
in that it consists of unary and pairwise terms but an important
difference is that the graphical structure of pairwise terms in an
HMM forms a chain, whereas an MRF may have an arbitrary
graph structure. In the case of 3D ice imagery, the graphical
structure is a grid graph, where every column has four neighbors
(two within the slice and two across slices). Unfortunately,
while exact inference on HMMs is efficient using the Viterbi
algorithm, inference on MRFs is NP-hard in the general case.
Fortunately, a number of approximate inference algorithms have
been developed. Xu et al. [12] use sequential TRW-S, which
is the de facto state-of-the-art in approximate MRF inference.
TRW-S is an iterative message-passing algorithm similar to the
belief propagation algorithm. In belief propagation, messages
are exchanged among the nodes of the MRF. The messages con-
tain likelihood distributions that reflect each variable’s beliefs
about the labels of its neighbors, based on its own evidence and
the messages it has received in past iterations. Local evidence,
thus, propagates from neighbor to neighbor, spreading across
the entire graph given enough iterations. After iterating is com-
plete, each node chooses its label based on its local evidence and
the last set of messages it received from its neighbors. TRW-S is
also based on message passing, but the messages are exchanged
along carefully constructed subsets of the graph, and final be-
lief distributions are obtained by combining estimates across
these subsets together. Although TRW-S is still an approxima-
tion algorithm, these enhancements give TRW-S better conver-
gence and accuracy bounds than the classic belief propagation
algorithm.

Because of the interslice message passing capability, this
method is capable of preventing discontinuities in both along-
track and elevation angle dimensions during the layer re-
construction. While the intraslice message passing procedure
performs in a similar fashion to the Viterbi algorithm by
propagating evidence to its neighboring pixels to the left and
right (elevation-angle dimension), the interslice message pass-
ing propagates ice-bottom layer evidence between consecutive
slices of 3D imagery (along-track dimension). The implemen-
tation of this algorithm has been changed from [11] so that the
message passing of the current iteration’s messages along the
elevation-angle dimension is now always performed outward
from nadir, rather than switching from left-to-right and right-
to-left on each iteration of the algorithm. The issue with the
previous solution was that a strong preference was given to the
cost messages originating from the extreme elevation-angle bins
on either side, where the signal quality is usually the worst. Since
we have ground-truth data at nadir (usually from having tracked
the corresponding 2D dataset) and the signal quality is often
best at nadir, the direction of the current iteration’s message was
changed to be always outward from nadir, in such way that the
nadir column asserts the greatest influence on the final result.

Unlike the Viterbi algorithm, the TRW-S algorithm on an
MREF is not guaranteed to converge to a global optimum.

However, based on trial and error similar to [11], we found
that 50 iterations usually produce satisfactory results. More
systematic testing in the future may suggest convergence criteria
rather than a fixed number of iterations.

C. 3D Imagery and the Viterbi Algorithm

The layer tracking solution using the Viterbi algorithm can
also be applied to 3D imagery with no additional adaptations.
This is accomplished by passing in individual slices of the 3D
imagery to the algorithm. This input format differs from that of
the TRW-S algorithm, to which 3D matrices can be passed in.

As expected, when applied to 3D imagery, the Viterbi algo-
rithm is outperformed in accuracy by the TRW-S algorithm and
is more likely to generate discontinuities in results, particularly
along range-lines due to the absence of message-passing in
that dimension. In order to force propagation of layer evidence
through the range-line dimension, the tracking result of a given
slice may be passed in as ground truth to the next slice in the 3D
data frame, but we do not explore this possibility in this paper.
Note that such an approach would still be weaker than TRW-S
because it would make decisions in a sequential manner and
would consider slices sequentially instead of simultaneously.
For example, a bad decision in the first slice would negatively
impact inference on subsequent slices because that bad estimate
would be fed in as ground truth. In contrast, TRW-S considers
all evidence simultaneously, meaning that ambiguity in the first
slice may be resolved by evidence in later slices.

V. RESULTS AND DISCUSSION
A. 2D Imagery

We tested our modified Viterbi routine on 2D data from
several NASA Operation IceBridge campaigns. The algorithm
received no manual aid of any kind, and the only ground truth
points provided were the aforementioned automatically acquired
crossovers. Three examples of tracked radar imagery are shown
in Fig 9. Fig. 9(a) is the original frame from Fig. 1 that contained
an ice-free section on the right side where the two layers merge
because of the ice mask information. Fig. 9 compares the (b) old
[6] and (c) new Viterbi tracking. This example demonstrates the
surface multiple suppression and smoothness constraints help-
ing to bridge a gap through a section of no signal. Fig. 9(d)—(f)
shows another comparison between the (e) old and (f) new
algorithms where detrending and surface multiple suppression
helped the new algorithm track the whole ice-bottom. Finally,
Fig. 10(a) shows a comparison between the ground truth and our
automated result.

To compare the results to the other published algorithms, we
tested our modified Viterbi routine on the 2009 NASA Operation
IceBridge Antarctica campaign, the same dataset used by the
authors of Rahnemoonfar et al. [5], Crandall et al. [6], Lee et al.
[8]. We did not rerun the other algorithms for the 2D imagery;
rather we compare to the results published in [5], [6], and [8]. Itis
crucial to note that the reported results in [S] and [8] discarded
appreciable amounts of echograms considered to be too poor
quality for tracking. In our results, we have utilized all range lines
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Fig. 10. Comparison of (a) 2D Viterbi tracking and (b) 3D TRW-S tracking

and manually selected ground truth.

TABLE I
2D IMAGE ICE-BOTTOM TRACKING ERROR RESULTS (IN PIXELS)

Error Viterbi MCMC Level-sets Viterbi
[6] 18] 5] (Ours)

Mean 32.0 37.4 6.6 6.2

Median - 9.1 2.1 1.0

No median error was calculated in [6].

where ground truth labels were available. It is likely that these
poor quality sections increased the mean error measurement of
the new Viterbi algorithm relative to [5] and [8].

Table II shows the results for our modified implementation of
the Viterbi algorithm as well as results for previously proposed
solutions, in terms of absolute column-wise difference compared
to manually detected ground truth, measured in pixels and aver-
aged between all frames analyzed. For accuracy and precision,
we define a true positive for a particular image column to be a
tracked layer within three range bins of the ground truth. A true
negative and a false positive column are then any column for
which this is not the case. Therefore, the accuracy and precision
are identical and equivalent to the percentage of correctly labeled
columns which we found to be 85%.

2014_Greenland_P3 - 20140325_05, frame 2, range line 2921

Range bins
g 8 8 8 8

8

10 20 30 40 50 60
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Fig. 11.  Example of tracking through discontinuities on a 3D slice.

It should be noted that the three previous solutions [5], [6],
[8] in Table II are able to automatically extract both ice-surface
and ice-bottom layers from a 2D echogram. Providing a layer
tracking algorithm with the location of the ice-surface boundary,
such as we propose, simplifies the tracking framework and
strengthens the location constraints for the ice-bottom. For the
ice surface used by our Viterbi algorithm on the 2D images
tracked in this paper, the tracking is done by a fully automated
threshold tracker aided by satellite-based ice-surface location
estimates. In the 2D imagery, the ice surface is usually the
dominant scatterer and is the first reflection, so the simple
automated threshold tracker tends to do very well.

Furthermore, all of the three previous solutions included here
[51, [6], [8] make use of less information than our proposed
solution. In all three, the a priori location of the ice-surface
and the ice-mask raster are not used by the algorithms; the
only input requirements of these techniques consist of the radar
echogram itself and a set of tunable hyper-parameters such as
weights and scaling factors. The original Viterbi implementation
[6] allows for ground truth points to be optionally added, either
automatically or by a human annotator, for both ice-surface and
ice-bottom layers. This is useful in cases where the automated
tracker makes a mistake: a human reviewer may then be able to
quickly add a small number of ground truth points and rerun the
algorithm. The published MCMC [8] and level-sets [5] methods
do not allow for corrections or improvements to be made by a
human annotator via the addition of ground truth points.

B. 3D Imagery

We executed both of our modified Viterbi and TRW-S algo-
rithm implementations on 3D imagery resulting from the 2014
NASA Operation IceBridge Canadian Arctic Archipelago cam-
paign. Previously published results included only seven frames,
whereas these results include all 102 frames from the dataset.
A comparison of the ground truth and the modified TRW-S
algorithm is shown in Fig. 10(b). A more difficult and interesting
result is shown in Fig. 11 where several discontinuities in the
ice-bottom are handled smoothly by the tracker.
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TABLE III
3D IMAGE ICE-BOTTOM TRACKING ERROR RESULTS (IN PIXELS)

Error ‘ Viterbi TRW-S Viterbi TRW-S
[11] [11] (Ours) (Ours)
Mean 12.1 9.7 9.8 5.1
Median 2.0 2.0 1.0 0.0
TABLE IV

CROSSOVER ABSOLUTE ERROR RESULTS (IN METERS)

Manually ‘
Error Corrected TRW-S
Mean 23 26
Median 11 13

The ground truth against which these results are compared
was obtained by manual correction of the results primarily using
the TRW-S algorithm. Because the algorithms allow additional
ground truth to be passed in, manual ground truth points were
added until the bottom layer was tracked in a satisfactory way.
If the image quality was too poor to be manually tracked, then
a quality mask was set so that the results for that section of the
imagery would not be included in the comparison. The use of
the automated trackers to create the manually tracked result is
necessary for the 3D dataset due to its large size. For this reason,
it is likely that the results presented here are biased toward the
results output by the completely automated TRW-S algorithm.
This is not the case for 2D echogram results, as manual tracking
of these images is a far more tractable problem.

Table III shows the results for our modified implementations
of the algorithms, as well as results for the originally proposed
implementations, in terms of absolute column-wise difference
compared to manually detected ground truth, measured in pixels
and averaged between all frames analyzed. The accuracy and
precision of our TRW-S result is 87% using the same definition
as for 2D imagery.

C. Crossover Errors

Table IV presents the crossover errors where flightlines
crossed and two independent measurements were acquired over
the same location. The two independent measurements allow
the consistency of the approach to be analyzed. We present
results for both the automated TRW-S algorithm and for the
manually corrected ground truth data. The dataset used for this
calculation is the same as used for the 3D image tracking pre-
sented above. Crossover errors can be visualized by overlaying
the two (crossing) flightlines of interest in a digital elevation
model. Fig. 12(a) and (b) displays the flight paths (green and
blue lines) of two data frames from the 2014 NASA Operation
IceBridge deployment, as well as the swath imaged by each.
The region surrounded by the red line is the intersection of the
two swaths and represents the data points that were imaged both
times. Fig. 12(c) displays the vertical error between the results
obtained by tracking the ice-bottom layer at the intersection of
the two data frames shown. Table IV represents the average
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Fig. 12.  Crossover visualization and error map.

of all 20 crossovers in the dataset; the mean absolute error for
Fig. 12(c) is the worst among all the crossovers and is 71.6 m.

VI. GEOSTATISTICAL ANALYSIS

We perform an examination of the statistical properties of
the ice layers after tracking and validation of the results. This
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analysis is valuable in detecting trends and biases of the detected
layers and has offered clues regarding potential improvements
to the cost functions used by the algorithms. We expect that it
will also be useful in future improvements of the layer tracking
technique, in which cost terms may be assigned based on the
probability distributions generated by this geostatistical anal-
ysis. We compute two distributions, both generated through
calculations performed on the 2014 NASA Operation IceBridge
dataset.

The first, shown in Fig. 13, is a distribution of direction-of-
arrival “step sizes” per unit change in range-bin. “Step size”
refers to the horizontal variation, in units of direction-of-arrival

bins, between two given layer points. In other words, this is a
distribution of direction-of-arrival bin variation of ice-bottom
layers when a unit change in range bin index is made.

The second distribution, shown in Fig. 14, contains informa-
tion regarding average ice thickness versus distance to nearest
ice-margin.

The term “ice-margin” refers to the meeting point between
icy and nonicy regions. The distance to the nearest ice-margin is
calculated using the Euclidean distance from each point on the
surface to the nearest nonicy region.

VII. CONCLUSION

We have demonstrated ice-bottom layer tracking in 2D SAR
images and 3D SAR tomographic images of polar ice sheets
using modified versions of two existing layer tracking solutions
based on the Viterbi and TRW-S algorithms from [11] and
compared our results to existing ice bottom tracking algorithms.
Based on the results obtained, the modified Viterbi algorithm
is optimal for tracking the ice bottom in 2D imagery and the
modified TRW-S is optimal for 3D surface reconstruction. The
Viterbi algorithm efficiently finds the exact global minimum
for the formulated HMM framework, and the TRW-S algorithm
iteratively performs statistical inference on the MRF formulated
from unary and binary cost functions while considering con-
straints between adjacent slices due to its 2D message passing
properties.

The improvements proposed here arise from refinements
made to the unary and binary cost functions used in the orig-
inal publications, which allow for the integration of further
domain-specific knowledge and sources of evidence. Additional
automated preprocessing steps are also applied on the 2D radar
echograms, such as data detrending, concatenation of adjacent
data frames, and blurring of the first surface multiple from the
image, which increase the accuracy of the tracker in adverse
scenarios such as noisy data and very weak ice bed returns.

The results obtained after our proposed modifications are
compared with the results from the original solutions using
Viterbi and TRW-S, as well as two more existing solutions
using MCMC and level-set techniques. Regarding the results
presented for the 2D imagery, it is noted that the previous 2D
solutions track both the ice-surface and ice-bottom simultane-
ously while using fewer sources of evidence. Also, the published
results for [5] and [8] excluded some imagery that was hard
to track, whereas we have included all imagery in our Viterbi
results. Even with these harder to track images included, the
modified Viterbi algorithm outperforms these other algorithms.
Nonetheless, a direct comparison of all algorithms on the same
image set is needed to provide a more precise comparison of the
algorithms.

We qualify the results from our modified implementation
of the TRW-S algorithm for 3D data when compared against
manually corrected data because the manually corrected data
is obtained from manually aiding the same TRW-S algorithm.
This was done due to the infeasibility of manually labeling
several tens of thousands of individual slices with no automated
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assistance, and for this reason, the results are likely biased
towards a lower mean error for TRW-S.

A self-assessment of the results output by the modified TRW-S
algorithm was performed at crossing points and suggests a mean
difference of 26 meters in elevation for the 3D SAR images. For
context, the manually corrected data exhibits a mean difference
of 23 m in the same crossover points.

Finally, a geostatistical analysis of the absolute and differ-
enced ice thickness after manual correction is also proposed.
The initial results obtained from it suggest relatively smooth
probability density functions that may be useful in improving
automated trackers in the future.
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